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Overview

Agenda:
Subset selection methods.
Ridge regression.
Lasso regression.

Readings:
ISLR Chapter 6, sections 6.1 and 6.2
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Linear Model: Pros and Cons

In this chapter, we are going to extend our understanding of the Linear Model

Y = β0 + β1X1 + β2X2 + ....+ βpXp

Despite its simplicity, linear regression model estimated by OLS has two key advantages: inter-
pretability and good predictive performance.
However, the linear nature of regression function means that complex non-linear relationships cannot
be easily modeled.
One solution is to add more features to the model — interactions, powers, log-transformations and
so on. This allows the model to retain its linear nature, yet approach non-linear models in terms of
flexibility and predictive performance.
The question then becomes — how does one select which features (regressors) to include? And why
do we want to select a subset of the features?
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Why Consider Alternatives to OLS?

Model Interpretability
Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By
removing these variables we can obtain a model that is more easily interpreted.

Prediction Accuracy
Suppose n is the number of observations and p is the number of regressors
OLS estimates generally have low bias
When n ≫ p, OLS estimates tend to also have low variance, and hence will perform well on test
observations
When n is not much greater than p then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future observations
Finally, OLS is generally infeasible when p > n.
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Feature Selection Methods

Subset selection. Identify a subset of the p predictors that are believed to be related to the response
Y . Then fit a model using least squares on the reduced set of variables.

Examples: best subset selection, forward stepwise selection, backward stepwise selection.

Shrinkage/regularization. Fit a model involving all p predictors, but the estimated coefficients are
shrunken towards zero relative to the least squares estimates. This shrinkage/regularization has the
effect of reducing variance and can also perform variable selection.

Examples: ridge regression, lasso regression, elastic net regression.

Dimension reduction. Project the p predictors into a M-dimensional subspace, where M < p. This is
achieved by computing M different linear combinations, or projections, of the variables. Then these
M projections are used as predictors to fit a linear regression model by least squares.

Examples: principal component regression, partial least squares.
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Best Subset Selection

Let M0 denote the null model, which contains no predictors. This model simply predicts the sample
mean for each observation.

For k = 1, 2, . . . , p:

Fit all
(
p
k

)
= p!

k!(p−k)!
models that contain all possible combinations of k predictors out of p.

For each value of k, pick the best out of these models as having the smallest value of the loss function
(lowest RSS or highest R2) on the training dataset and call that model Mk .

Select a single best model among M0,M1, . . . ,Mp using either MSE from cross-validation, Cp

(AIC), BIC or adjusted R2 (more on these later).
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Best Subset Selection
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Stepwise Selection

The total number of models to estimate in best subset selection algorithm is equal to 2p and that
number grows very quickly with p. There are 1024 models for p = 10, over a million for p = 20 and
with p = 40 it becomes computationally infeasible even on fastest modern hardware.

Because of mainly this reason, stepwise methods, which explore a far more restricted set of models,
are attractive alternatives to best subset selection.
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Forward Stepwise Selection

Forward stepwise selection begins with a model containing no predictors, and then adds predictors
to the model one-at-a-time, until all p predictors are in the model.
At each step the variable that gives the greatest additional improvement to the fit is added to the
model.

Let M0 denote the null model, which contains no predictors.
For k = 1, 2, . . . , p − 1:

Consider all p − k models that augment the predictors in Mk with one additional predictor.
Pick the best out of these models as having the smallest value of the loss function (lowest RSS or
highest R2) on the training dataset and call that model Mk+1.

Select a single best model among M0,M1, . . . ,Mp using either MSE from cross-validation, Cp

(AIC), BIC or adjusted R2.
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Backward Stepwise Selection

Backward stepwise selection begins with a full model containing all p predictors, and then iteratively
removes the least useful predictor one-at-a-time.

Let Mp denote the full model, which contains all p predictors.
For k = p, p − 1, . . . , 1:

Consider all k models that contain all but one of the predictors in Mk for a total of k − 1 predictors.
Pick the best out of these k models (lowest RSS or highest R2) on the training dataset and call that
model Mk−1.

Select a single best model among M0,M1, . . . ,Mp using either MSE from cross-validation, Cp
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Backward vs Forward Selection

Both backward and forward stepwise selection search only through a small subset of 2p and thus can
be applied in settings where p is too large for best subset selection.

However, neither of them is guaranteed to yield the best model containing a subset of p predictors.

Backward selection requires that the sample size n is larger than the number of variables p (so that
the full model with p predictors can be fit). In contrast, forward stepwise can be used even when
n < p, and so is the only viable subset method when p is very large.
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Choosing the Optimal Model

The model containing all p predictors will always have the smallest RSS and the largest R2, since
these quantities are related to the training error, which is typically negatively related to number of
features used.

We wish to choose a model with low test error, not a model with low training error. Therefore, RSS
and R2 are not suitable for selecting the best model among a collection of models with different
numbers of predictors.
We can directly estimate the test error, using either a validation set approach or a cross-validation
approach, as discussed in previous lectures.
Alternatively, we can indirectly estimate test error by making an adjustment to the training error to
account for the bias due to overfitting.
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Cp, AIC, BIC, and Adjusted R2

Cp, AIC, BIC, and Adjusted R2 are different measures designed to introduce a correction to training
error to help avoid overfitting issues.

Mallow’s Cp:

Cp =
1
n
(RSS + 2d σ̂2)

where d is the total number of parameters used and σ̂2 is an estimate of the variance of the error
term ϵ.
The AIC criterion is defined for a large class of models fit by maximum likelihood:

AIC = −2 log L+ 2d

where L is the maximized value of the likelihood function for the estimated model.
In case of linear model with normal errors Cp and AIC are equivalent.
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Cp, AIC, BIC, and Adjusted R2

BIC
BIC =

1
n
(RSS + log(n)d σ̂2)

Like with Cp and AIC, the lower value of BIC, the better.
BIC replaces the term 2d σ̂2 used by Cp with a term log(n)d σ̂2. Since log(n) > 2 for any n > 7, BIC
places heavier penalty on models with many variables, and hence usually results in the selection of
smaller models than Cp.
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Cp, AIC, BIC, and Adjusted R2

For a least squares model with d variables the adjusted R2 statistic is

R2
adj = 1 − RSS/(n − d − 1)

TSS/(n − 1)

Unlike Cp, AIC and BIC, a larger value of R2
adj indicates a model with a smaller test error.

Maximizing R2
adj is equivalent to minimizing RSS

(n−d−1) . While RSS always decreases as the number
of variables in the model increases, R2

adj may increase or decrease due to the presence of d in the
denominator.
In other words, unlike the standard R2, the adjusted R2 statistic pays a price for the inclusion of
unnecessary variables in the model.
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Credit Data Set Example
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