ECON3389 Machine Learning in Economics

Module 4 Feature Selection in Linear Models

Alberto Cappello

Department of Economics, Boston College

Fall 2024

Overview

Agenda:

- Subset selection methods.
- Ridge regression.
- Lasso regression.

Readings:

• ISLR Chapter 6, sections 6.1 and 6.2

Linear Model: Pros and Cons

• In this chapter, we are going to extend our understanding of the Linear Model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p$$

- Despite its simplicity, linear regression model estimated by OLS has two key advantages: interpretability and good predictive performance.
- However, the linear nature of regression function means that complex non-linear relationships cannot be easily modeled.
- One solution is to add more features to the model interactions, powers, log-transformations and so on. This allows the model to retain its linear nature, yet approach non-linear models in terms of flexibility and predictive performance.
- The question then becomes how does one select which features (regressors) to include? And why do we want to select a subset of the features?

- Model Interpretability
 - Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By removing these variables we can obtain a model that is more easily interpreted.

- Model Interpretability
 - Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By removing these variables we can obtain a model that is more easily interpreted.
- Prediction Accuracy
 - Suppose n is the number of observations and p is the number of regressors
 - OLS estimates generally have low bias
 - When $n \gg p$, OLS estimates tend to also have low variance, and hence will perform well on test observations

- Model Interpretability
 - Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By removing these variables we can obtain a model that is more easily interpreted.
- Prediction Accuracy
 - Suppose n is the number of observations and p is the number of regressors
 - OLS estimates generally have low bias
 - When $n \gg p$, OLS estimates tend to also have low variance, and hence will perform well on test observations
 - When *n* is not much greater than *p* then there can be a lot of variability in the least squares fit, resulting in overfitting and consequently poor predictions on future observations

- Model Interpretability
 - Including irrelevant variables in our model leads to unnecessary complexity in the resulting model. By removing these variables we can obtain a model that is more easily interpreted.
- Prediction Accuracy
 - Suppose n is the number of observations and p is the number of regressors
 - OLS estimates generally have low bias
 - When $n \gg p$, OLS estimates tend to also have low variance, and hence will perform well on test observations
 - When n is not much greater than p then there can be a lot of variability in the least squares fit, resulting in overfitting and consequently poor predictions on future observations
 - Finally, OLS is generally infeasible when p > n.

Feature Selection Methods

- Subset selection. Identify a subset of the p predictors that are believed to be related to the response Y. Then fit a model using least squares on the reduced set of variables.
 - Examples: best subset selection, forward stepwise selection, backward stepwise selection.

Feature Selection Methods

- Subset selection. Identify a subset of the p predictors that are believed to be related to the response Y. Then fit a model using least squares on the reduced set of variables.
 - Examples: best subset selection, forward stepwise selection, backward stepwise selection.
- Shrinkage/regularization. Fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage/regularization has the effect of reducing variance and can also perform variable selection.
 - Examples: ridge regression, lasso regression, elastic net regression.

Feature Selection Methods

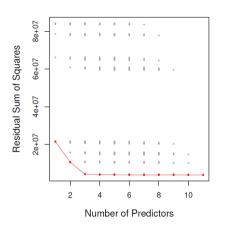
- Subset selection. Identify a subset of the p predictors that are believed to be related to the response Y. Then fit a model using least squares on the reduced set of variables.
 - Examples: best subset selection, forward stepwise selection, backward stepwise selection.
- Shrinkage/regularization. Fit a model involving all p predictors, but the estimated coefficients are shrunken towards zero relative to the least squares estimates. This shrinkage/regularization has the effect of reducing variance and can also perform variable selection.
 - Examples: ridge regression, lasso regression, elastic net regression.
- Dimension reduction. Project the p predictors into a M-dimensional subspace, where M < p. This is achieved by computing M different linear combinations, or projections, of the variables. Then these M projections are used as predictors to fit a linear regression model by least squares.
 - Examples: principal component regression, partial least squares.

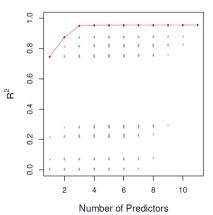
• Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.

- Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- For k = 1, 2, ..., p:
 - Fit all $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ models that contain all possible combinations of k predictors out of p.

- Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- For k = 1, 2, ..., p:
 - Fit all $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ models that contain all possible combinations of k predictors out of p.
 - For each value of k, pick the best out of these models as having the smallest value of the loss function (lowest RSS or highest R^2) on the training dataset and call that model \mathcal{M}_k .

- Let \mathcal{M}_0 denote the null model, which contains no predictors. This model simply predicts the sample mean for each observation.
- For k = 1, 2, ..., p:
 - Fit all $\binom{p}{k} = \frac{p!}{k!(p-k)!}$ models that contain all possible combinations of k predictors out of p.
 - For each value of k, pick the best out of these models as having the smallest value of the loss function (lowest RSS or highest R^2) on the training dataset and call that model \mathcal{M}_k .
- Select a single best model among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using either MSE from cross-validation, C_p (AIC), BIC or adjusted R^2 (more on these later).





Stepwise Selection

• The total number of models to estimate in best subset selection algorithm is equal to 2^p and that number grows very quickly with p. There are 1024 models for p=10, over a million for p=20 and with p=40 it becomes computationally infeasible even on fastest modern hardware.

Stepwise Selection

- The total number of models to estimate in best subset selection algorithm is equal to 2^p and that number grows very quickly with p. There are 1024 models for p = 10, over a million for p = 20 and with p = 40 it becomes computationally infeasible even on fastest modern hardware.
- Because of mainly this reason, *stepwise* methods, which explore a far more restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model one-at-a-time, until all p predictors are in the model.
- At each step the variable that gives the greatest additional improvement to the fit is added to the model.

Forward Stepwise Selection

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model one-at-a-time, until all p predictors are in the model.
- At each step the variable that gives the greatest additional improvement to the fit is added to the model.
- Let \mathcal{M}_0 denote the null model, which contains no predictors.
- For k = 1, 2, ..., p 1:
 - Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - Pick the best out of these models as having the smallest value of the loss function (lowest RSS or highest R^2) on the training dataset and call that model \mathcal{M}_{k+1} .

Forward Stepwise Selection

- Forward stepwise selection begins with a model containing no predictors, and then adds predictors to the model one-at-a-time, until all p predictors are in the model.
- At each step the variable that gives the greatest additional improvement to the fit is added to the model.
- Let \mathcal{M}_0 denote the null model, which contains no predictors.
- For k = 1, 2, ..., p 1:
 - Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - Pick the best out of these models as having the smallest value of the loss function (lowest RSS or highest R^2) on the training dataset and call that model \mathcal{M}_{k+1} .
- Select a single best model among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using either MSE from cross-validation, C_p (AIC), BIC or adjusted R^2 .

Backward Stepwise Selection

• Backward stepwise selection begins with a full model containing all p predictors, and then iteratively removes the least useful predictor one-at-a-time.

Backward Stepwise Selection

- Backward stepwise selection begins with a full model containing all p predictors, and then iteratively removes the least useful predictor one-at-a-time.
- Let \mathcal{M}_p denote the full model, which contains all p predictors.
- For k = p, p 1, ..., 1:
 - ullet Consider all k models that contain all but one of the predictors in \mathcal{M}_k for a total of k-1 predictors.
 - Pick the best out of these k models (lowest RSS or highest R^2) on the training dataset and call that model \mathcal{M}_{k-1} .

Backward Stepwise Selection

- Backward stepwise selection begins with a full model containing all p predictors, and then iteratively removes the least useful predictor one-at-a-time.
- Let \mathcal{M}_p denote the full model, which contains all p predictors.
- For k = p, p 1, ..., 1:
 - ullet Consider all k models that contain all but one of the predictors in \mathcal{M}_k for a total of k-1 predictors.
 - Pick the best out of these k models (lowest RSS or highest R^2) on the training dataset and call that model \mathcal{M}_{k-1} .
- Select a single best model among $\mathcal{M}_0, \mathcal{M}_1, \dots, \mathcal{M}_p$ using either MSE from cross-validation, C_p (AIC), BIC or adjusted R^2 .

Backward vs Forward Selection

• Both backward and forward stepwise selection search only through a small subset of 2^p and thus can be applied in settings where p is too large for best subset selection.

Backward vs Forward Selection

- Both backward and forward stepwise selection search only through a small subset of 2^p and thus can be applied in settings where p is too large for best subset selection.
- ullet However, neither of them is guaranteed to yield the best model containing a subset of p predictors.

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

Backward vs Forward Selection

- Both backward and forward stepwise selection search only through a small subset of 2^p and thus can be applied in settings where p is too large for best subset selection.
- However, neither of them is guaranteed to yield the best model containing a subset of *p* predictors.

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income	rating, income,
	student, limit	student, limit

• Backward selection requires that the sample size n is larger than the number of variables p (so that the full model with p predictors can be fit). In contrast, forward stepwise can be used even when n < p, and so is the only viable subset method when p is very large.

• The model containing all p predictors will always have the smallest RSS and the largest R^2 , since these quantities are related to the training error, which is typically negatively related to number of features used.

- The model containing all p predictors will always have the smallest RSS and the largest R^2 , since these quantities are related to the training error, which is typically negatively related to number of features used.
- We wish to choose a model with low test error, not a model with low training error. Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.

- The model containing all p predictors will always have the smallest RSS and the largest R^2 , since these quantities are related to the training error, which is typically negatively related to number of features used.
- We wish to choose a model with low test error, not a model with low training error. Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.
- We can directly estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in previous lectures.

- The model containing all p predictors will always have the smallest RSS and the largest R^2 , since these quantities are related to the training error, which is typically negatively related to number of features used.
- We wish to choose a model with low test error, not a model with low training error. Therefore, RSS and R^2 are not suitable for selecting the best model among a collection of models with different numbers of predictors.
- We can directly estimate the test error, using either a validation set approach or a cross-validation approach, as discussed in previous lectures.
- Alternatively, we can indirectly estimate test error by making an adjustment to the training error to account for the bias due to overfitting.

• C_p , AIC, BIC, and Adjusted R^2 are different measures designed to introduce a correction to training error to help avoid overfitting issues.

- C_p , AIC, BIC, and Adjusted R^2 are different measures designed to introduce a correction to training error to help avoid overfitting issues.
- Mallow's C_p :

$$C_p = \frac{1}{n}(RSS + 2d\widehat{\sigma}^2)$$

where d is the total number of parameters used and $\hat{\sigma}^2$ is an estimate of the variance of the error term ϵ .

- C_p , AIC, BIC, and Adjusted R^2 are different measures designed to introduce a correction to training error to help avoid overfitting issues.
- Mallow's C_p :

$$C_p = \frac{1}{n}(RSS + 2d\widehat{\sigma}^2)$$

where d is the total number of parameters used and $\hat{\sigma}^2$ is an estimate of the variance of the error term ϵ .

• The AIC criterion is defined for a large class of models fit by maximum likelihood:

$$AIC = -2\log L + 2d$$

where L is the maximized value of the likelihood function for the estimated model.

• In case of linear model with normal errors C_n and AIC are equivalent.

BIC

$$\mathsf{BIC} = \frac{1}{n}(RSS + \log(n)d\widehat{\sigma}^2)$$

- Like with C_p and AIC, the lower value of BIC, the better.
- BIC replaces the term $2d\widehat{\sigma}^2$ used by C_p with a term $\log(n)d\widehat{\sigma}^2$. Since $\log(n) > 2$ for any n > 7, BIC places heavier penalty on models with many variables, and hence usually results in the selection of smaller models than C_p .

• For a least squares model with d variables the adjusted R^2 statistic is

$$R_{adj}^2=1-rac{RSS/(n-d-1)}{TSS/(n-1)}$$

• Unlike C_p , AIC and BIC, a larger value of R_{adj}^2 indicates a model with a smaller test error.

• For a least squares model with d variables the adjusted R^2 statistic is

$$R_{adj}^2=1-rac{RSS/(n-d-1)}{TSS/(n-1)}$$

- Unlike C_p , AIC and BIC, a larger value of R_{adi}^2 indicates a model with a smaller test error.
- Maximizing R_{adj}^2 is equivalent to minimizing $\frac{RSS}{(n-d-1)}$. While RSS always decreases as the number of variables in the model increases, R_{adj}^2 may increase or decrease due to the presence of d in the denominator.
- In other words, unlike the standard R^2 , the adjusted R^2 statistic pays a price for the inclusion of unnecessary variables in the model.

Credit Data Set Example

